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I. INTRODUCTION

Let A be an m X n matrix and b a given Ill-vector. We shall assume that all
matrices and vectors which occur in this paper are over the real field !R.
Let 11 . !I be a norm on [Rm. The problem we wish to study is that of giving
algorithms for finding x E [R", minimizing

where
:I 7)(x)l, I x f:: !Rill, ( l. I )

Ax. ( 1.2)

( 1.3)

We call this problem (P). Assuming that is both smooth and strictly
convex, we gave a few algorithms for solving the foregoing problem in [5 J.
Recall that Ii . II is said to be strictly convex, if and only if, x il= Y'I I,
II x -[- Y II = 2, implies x .~~ y . .1':1 is said to be smooth, if and only if,
through each point of unit norm there passes precisely one hyperplane
supporting the closed unit ball B = {x E IR:m II! X II l}. (Definitions and
properties of smooth norms are given in [I].)

When we equip IRm with the norm

!I v II ~~ (f [V; i J'i I",r '
i~[

( 1.4)max (u i r),
1.'Ii,;,-1

II It Ii'

where Wi > 0, for i ~-" I, .. " m the algorithms in [5] cover the weighted In,
(1 < p < (0) case. An algorithm appears in [3] when p > 2. In [4] we
considered a dual problem (P'), For easy reference we now state the dual
problem (P'). Given II . I: on !Rm , as was done in [2], we define . ii', the norm
dual to II . II by
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where, here and throughout, (') denotes the standard inner product on [RI", i.e,.

rn

(u 1') ~~ LU,l',.
i --,1

The dual problem (P') is:

(1.5)

(P')
\ Find .I' 0 !Rill such that A'y

land (Ii .1') is a maximum,

O. . \' l.

where A' is the transpose of A. The algorithms in [5] were directed toward
solving (P') so that the duality theorem [4, Theorem 2.1] yielded a solution of
problem (P).

Here we show that algorithms can be given to solve the problem (P)
directly, and that there is no need to solve the problem (P') initially. The
present procedures. therefore, avoid the intermediate minimization sub
problem occuring in each stage of step 3 of the iteration in Algorithm 3.1 [5].
Besides this, the present algorithms should be computationally better
behaved than the ones in [5], since in generaln IJI, so that the transposed
matrix A' occuring in problem (p') has less rows than columns. Such
matrices behave poorly in actual numerical computations. It is very likely,
that in the concrete I"-case (Eq. (1.3)), the present algorithms are much better
in the range 2 < P x,; whereas, the algorithms in [5] are more suited for
I p < 2. (We already have some numerical evidence to this efrect.)l

We will also see later that we can associate another problem to be denoted
(P*). which is also a maximization problem like (P'). The solutions of (P)

and (P*) are more directly connected (see Theorem 2.4 and Corollary 4.5)
than the solutions of the pair of problems (P) and (P'). The connection
between the solutions of (P) and (P') is the content of the Duality theorem
in [4], which depended on strict convexity of the '!. That the Theorem 2.4
holds for any norm illustrates again the direct connection between (P) and
(P*).

Recall that r' is said to be a . i'-dual of r .~ 0 if, and only if.

and (e' 11') = I'ii'. (1.6)

Analogously, let us say that 1'* is a i' . II'-dual of e"~ 0, if and only if,

le* = I and (e* I v) = '11' ( 1.7)

1 The actual numerical implementation of the algorithms appearing in this paper has
been carried out by C. S. Duris using Householder transformations. His report with
computer programs, respective execution times, iterations, and other information is being
prepared for publication in Numer. Mat.
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We have convenient explicit expressions for the . !'-dual and . -dual
when the .. is given by (1.3). In fact, let us write for given weights W, O.

(1.8)
and define

for 0: E IR. Suppose, we denote the norm in (1.3) by y

It is easy to verify that if

'I!=! .
then

i!'= il'

• I.e.,

( 1.9)

(1.10)

( 1.1 I)

(1.12)

where q is the conjugate to p, viz. (lip) + (1Iq) = I. Moreover, if y
then y', !I . !i-dual of y, has the components

O.

, (' i Yi : )"'1Yi ..0.. 'i.I'- sgn Yi ,
H'; !:}'.

( 1.13)

where II y II' is given by (1.1 2). Also y*, . I,'-dual of y, is given by its com
ponents

I . 1
IV· I v fI sgn v· .y I v l • i-

]1,

(1.14)

We introduce some more notation and terminology which will remain
standard throughout the sequel. Primes will denote i! . ii-duals, and stars,
II . 'I'-duals of a given vector. We shall refer to problem (P), when p .~. 2 and
Wi = I, for a)) i, as the 12-problem (P). The corresponding f2-norm is denoted

by il . !!2'
Let E be the orthogonal projection (orthogonal, for the inner product (1.5))

of [Rm onto K = ker A' = {x E [Rm I A'x = OJ. Im(A) == {Ax E [Rm-j x E [Rllj.

It is well known that lm(A) = K' .=-= {z E!Ri m I (z k) =. 0, Vk E K}. Also we
define deb, K I ) = inf{li b - z Ii 1 z E K 'i. Let s Eb, so that s is the minimal
error of f2-problem (P). We assume throughout that s ~i O. By (v) we denote
the linear span of the vector 1'.

2.

We proceed to establish a few theorems which explain the structure of
problem (P). They will also be used in the proof of convergence of the
algorithms to be given in Section 3. We begin with a lemma.
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2.1. LEMMA. If Ii' is smooth, Ihen 11':l'-duals are unique, i.e., the
*-operation is a single L'alued map oflR""{O] onto the 11 • il'-unit sphere. Moreol'er,
if v ';" 0, then

v' *c.c (I Iii V 1I')v.

Also the *-map is continuous on 1R1n\,{O:.

(2.1.1 )

Proof This is a routine verification and is immediate if we recall that
• 1\ is smooth, if and only if, 11 • 'l' is strictly convex. [5, Section 2]. If u IV

are both . 1;'-duals of ,,-!c 0, so that

then

1111,1' = I = ",lV'1 and (u I v) = Ii v = (IV i v),

I: 1':! = G(ll + w) Ie) :IHu + w)II' 111' L < :1 1'1',

a contradiction. (2.1.1) is immediate from this uniqueness property. Regarding
the continuity of the *-operation; if L\, v EO IRm\{o} with 1'; -+ v, to show
1\* -+ v*. Since II Uj* II' = I, v* II' = L due to compactness of the II' -unit
sphere, it is sufficient to show that (I';*) has v* as a unique adherent point.
If v~.~.. u, then since (u~, Ie;) ~~ L\ iI we see that (ll! 1') = II v and
Ii u II' = I, so that u = 1'*.

2.2. THEOREM. Let . II he a norm on IRm. Suppose

Izll = I (2.2.1 )

and that z* EO K.
Then

h- (b i .:*)z EO ImCA),

and p the I . ii-minimal error ofproblem (P) is giL'en by

p = deb, K').= (b I z*).

(2.2.2)

(2.2.3)

Proof A proof of this can be obtained from part of Theorem 5.1 of [5].
Here is a more direct proof. Since s E K, we have

(z I s)
Ez =~ (sls)s.

1 = :1 z:1 = (z* I z)

= (£z* 1 z), smce z* EO K,

= (7* 'E) = iz * I S)(2 I s) b (') 24)
- I z (s I s) , y ~. . .

(2.2.4)

(2.2.5)
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Since Im(A) = KJ, to prove (2.2.2) is to show that

(b Ik) - (b I z*)(z I k) = 0, Vk E K. (2.2.6)

Since Eb = sand z* E K, this is same as requiring to show that

(s I k) - (s I z*)(z I k) = 0, Vk EK. (2.2.7)

Now (2.2.7) is clear if k E K and k --l s, for then z --l k. Hence, to establish
(2.2.7) we need to check it only when k = s. But this is (2.2.5), which proves
(2.2.2). Also,

p = deb, K) CS; II b ~ (b-- (b z*)z)il ~= (b z*), (2.2.8)

whereas for every k E K\

I! b - k Ii ~ (b ~ k i z*) = (b z*), (2.2.9)

completing the proof of (2.2.3).

2.3. COROLLARY. Let z be as in the theorem with z* E K. Then

(2.3.1 )(h I z*)
(s i s)
(s· z) .

Proof Since z* Co K, (b I z*) cc (s z*); but by (2.2.5) (s I z*)(s i z) = (s Is),
which yields (2.3.1). Q.E.D.

Given problem (P), as remarked earlier, we associated a dual problem (P')
in terms of II . II', the dual norm of .[. As shown by the following theorem,
we can also associate a dual problem (P*) directly in terms of II . il itself.
The theorems also make precise how a solution of (P*) yields a solution of
(P).

2.4. THEOREM. Let . II be a norm on IRrn and s E K be the P-error vector
ofproblem (P), i.e., s = Eb. Consider the problem

(P*) M = max(s I w),
w

subject to w = I, WE K.L ® (s).

Then

pM = (s is). (2.4.1 )

where

p = il . ii-minimal error ofproblem (P). (2.4.2)

Moreover, the equation system

Ax = b - M-l(S I s)z, (2.4.3)
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where z is a solution of problem (P*), has an exact solution which is a
\I . II-minimal solution ofproblem (P).

Proof Evidently M < OCJ and the max is attained for some z. Now

M = max{(s I k + f3s)111 k + f3s Ii = I, k E K.L, f3 E IR}

= (s Is) max{f3 III k + f3s II ,= 1, k EK\ f3 E IR}, since s EK,

= (s I s) max{f3 III k + s \I = (l1f3), k E K\ f3 * O}

= (s Is) max{(l/ll k + s II) IkE K-L}

= (s Is)[min{11 k + sill k E Kl}]-l

= (s I s)/p, which is (2.4.1), cf. (2.2.3).

To show that Ax = b - M-l(S i s)z has an exact solution is to show that

i.e.,

(b Ik) - M-l(S Is)(z Ik) = 0,

(s I k) - M-l(S Is)(z Ik) = 0,

VkEK,

Vk EK.

(2.4.4)

(2.4.5)

This is clear if k E K is such that k 1- s, for then k 1- z, since z E K~ E8 (s).
So we need to verify (2.4.5) only when k = s. Due to (P*), (z Is) = M,
so that (2.4.5) follows when k = s.

Also

II 7](x)!1 = II b - Ax II = M-l(S I s) II z II = p, by (2.4.1). Q.E.D.

2.5. THEOREM. Let Ii . II be a smooth, strictly convex norm and z a solution
ofproblem (P*). Then

and

Z* E K,

p = (b I z*).

(2.5.1 )

(2.5.2)

Proof We shall give two proofs; the first will depend on Theorem 5.1
of [5]. The second proof is independent of this theorem and is presented
in Section 4.3.

First only assume that II . II is strictly convex. Let y E K be such that
II y ii' = 1 and (s I y) = p. Such a y exists since problem (P') has a solution.
By Theorem 5.1 of [5] then Ey' E (s). (Recall primes denote II . II-duals.)
In other words,

y' E K l E8 (s).

Also Eq. (5.3) of [5] shows that

(s !y)(y' Is) = (s Is).
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Hence

SREEDHARA"

(.1" .I) (.I i s)/p by (2.4, I), (2.5.3)

Since y' Ii ,~c I, .1" E K'-- (.I) and (2.5.3) holds, we see that j" is a solution
of problem (P*). Due to strict convexity of .. zc y'.

Now assume that . is also smooth. besides being strictly convex. Then
by Lemma 2. I, i is a single-valued map so that

- ;~< l' I:.':.

Again by Lemma 2.1, y' * \'
Equation (2.5.2) is now clear.

2.6. LEMMA. Let

1'. This shows that z* E K.
Q.E.D.

p = deb, K) O.

Suppose {3 0 and v E K j such that

(2.6. I)

: r {3s

Then

f3 (I /p).

Proof

l. (2.6.2)

(2.6.3)

p = inf h- k
lccK'-

inf s (/ E)h- k
kEK

L

inf I s k.
kEKl.- .,

If (2.6.2) holds then (I /(3)r .I

(l/{3)' p.

(1//3). Now since, ~(I!{3k E K L we get
Q.E.D.

2.7. LEMMA. Let 'I' be a smooth norm on IR'" and z. w EO IR'" be linearly
independent. Then 0: E IR is such that

it' and only if

I z - (XW 1 !!;: - AW (2.7. J)

((z - exw)* · w) O. (2.7.2)

Proof Refer Lemma 5. ] of [5] and note that primes in that lemma go
over into stars here, since Ii . II is used in place of L. il'. This change also
explains the use of smoothness in the hypothesis of the present lemma.
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In this section the algorithms for solving (P) are given. Throughout this

section we assume that '!' is both strictly convex and smooth.

3.1, ALGORITHM. Step I. Let)\ = .I' where .I' ,= Eb, the usual
minimal error of {2-problem (P). Or, more generally, let)'1 E K! E8 (.1'), with

YJ land()\ls):>O.

Step 2. Find)'t* the . -dual of )',. 1n the weighted {Ii-case, it is
easy to find the yt*. (See (1.14)).

Step 3. Put I'J = FYt*, where F = I-E. If 1'1 "2' is small, solve the
equation system.

(.1'1.1')
Ax = b - -(-'-.-) 1'1'

SI)'J -

in P-sense and take this as a solution of problem (P). If II L't 112 is not small,
proceed as follows. Other tests for a solution to be acceptabIe: may be

formulated using the so-called "duality gap," since Ii 7)(x)lj ~ (b I y) for every
Y E K. ! )' = I with equality only when we have solutions of (P) and (P').

Step 4. Choose ex > 0 such that

S'tep 5. Choose fJ > 0 such that

YI - (x/2) r1 + fJs= 1.

Let .1'2 = )'1 - (ex/2) r1 +· fJs. Replace )'1 by .1'2 and go to Step 2 onwards
carrying out the iteration.

The existence of ex > 0 satisfying Step 4 is proved in Lemma 4.1 .. Anyone
of the procedures in [5] for solving II ZI - exw1 W= I, in the notation of that
paper, is applicable here. Hence, we shall omit a description of an algorithm
for finding ex.

The existence of f3 0 in Step 5 follows from the fact that

(1'(,\) = Yl - (ex/2) r1 '\.1'

is a strictly convex function of'\ and <p(0) < 1, by the strict convexity of

3.2. ALGORITHM. Step I. Let yt = .I' or more generally, let
yt E K '. 33 (.1'), with II yt I' = I and (Yl Is) O.

Step 2. Find)'1*.
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Step 3. Put VI = FYI* and do as in Step 3 of Algorithm 3. I if [I VI 112 is
small. If II VI 112 is not small proceed as follows.

Step 4. Choose a > 0 such that

Step 5. Put

Replace }'1 by Y2 and go to Step 2 onwards carrying out the iteration.

4.

In this section we show that the algorithms of Section 3 converge. More
over, they have some natural generalizations which we state as theorems.
We need a preliminary lemma.

4.1. LEMMA. Let II' II be a strictly concex, smooth norm on IR"'. If
YI E KJ.. EB (s) with I! YIII = I, and if l\ = FYI * "* 0, then there is a positice cx

such that

IIYI - al\ II < 1. (4.1.1)

Moreover, if {YI ,VI} are linearly independent then every cx > 0 satisfying
(4.1.1) is such that

I' YI - CXVI II > O.

Proof We have

and

I[.J!I - AVI [I:); (YI*! YI - Al\)

= I - A(YI* I VI) = I - A111'1 :I~ .

(4.1.2)

(4.1.3)

(4.1.4)

From (4.1.4) it is clear that II YI - AVI II > I, whenever A < O.
If {YI, VI} are linearly dependent there is a scalar ,ex for which

II YI - aVI II = 0. By the conclusion we just made, II YI - AVI > I if A < O.
Hence, a satisfying II YI - CXDI II = 0, must be positive, which shows that

a = 1/11 VIII·
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Hence, suppose that {YI , VI} are linearly independent. If the lemma in
question is false then we should, therefore, have

i.e.,

Ii YI - ,\1\ II ~ I, "1'\ E IR,

"1'\ E R

(4.1.5)

(4.1.6)

By Lemma 2.7, then (YI* 11\) = 0, which by (4.1.3) implies that VI = 0;
a contradiction.

4.2. COROLLARY. If YI and 1\ are linearly independent and are as in the
lemma then there exists a unique 0; > 0 such that

II YI -- (XVIII = I. (4.2.7)

Proof The function cp('\) = Ii YI - '\vI II is strictly convex and <p(0) = I.
By the foregoing lemma there is ,\ > 0 such that cp(A) < 1. Since cp(A) ->- CtJ

as A--+ CtJ, there is IX > 0 such that cp(o;) = I. Uniqueness of 0; follows from
strict convexity of cp.

Before proceeding further we can utilize the lemma to give an alternate
proof of Theorem 2.5. We use the notation of that theorem.

4.3. Alternate Proof of Theorem 2.5. If z* 1: K, then V = Fz* O. Now
- I, z E K L G) (s) and (z I s) 0, since z is a solution of problem (P*).

Note that (v : s) = 0; whereas, (z : s) > 0, so that {z. l'} are linearly inde-
pendent. By Lemma 4.1, there is ex 0 such that

o < LZ --- '1:1' < I.

Then

(4.3.8)

II' =, Z - (Xt' K J.

I z -(Xv Ii E

whereas, since s .1 v

(s), and I: H'II = I; (4.3.9)

(s I z)
(s i w) = II I' > (s : z), (4.3.10)

Z -- 0;1' !

a contradiction to the definition of z, as a solution of problem (P*). Q.E.D.

4.4. THEOREM. Assume that II . II is both strictly convex and smooth. Then
the Algorithm 3.1 converges to a solution ofproblem (P).

Proof If VI = 0, then due to the definition of F, YI* E K. Also since
YI E KJ. EB (s), I! YII: = 1, by Theorem 2.2 we conclude that the equation
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system Ax = b - (b .1'1*) .1'1 is exactly solvable, yielding a solution of
problem (P) with! . !(error (h I Y1 *) (s i s)/(s IYI)' (The last equality
follows from Corollary 2.3.)

Denote by h, 1'1., 'Jik' (31. the corresponding elements defined at the kth
stage of the iteration. By construction .1'1. E K (s), k 1.2..... It would be
convenient to set (30 (Yl s)/(s! s) and only assume that .1'1 E' K' (s),

Yl ccc I, in place of the explicit assumption in Step 1 of Algorithm 2.1,
where we took Y1 = s I. We shall let

(4.4.1 )

Then Yo E' K L. Note that (30 0 and due to the way we defined (31. , /3/. 0
for every k. We have

\4.4.2)

a fortiori, (3k-~ O. In fact,

II (3k~ - ,
7.. 0 P

(4.4.3)

where p is the minimal . II-error of problem (P). This stronger assertion
will be evident in the course of proof of this theorem, though we now
explicitly establish only the estimate

By the definition of (.I'd,

I (3k
/.··0

1

p
(4.4.4)

Iterating (4.4.5) we get

(4.4.5)

1.--1
Yo - 1I Dijl'j

j~1

(4.4.6)

Note that Yo E' K~ and I'j E K' for each j. Moreover, II Yl

Lemma 2.6

I, so that by

which establishes (4.4.4).

I.-I

I (3j
) ell

1

P
(4.4.7)
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We claim that the sequence (v,) converges to O. [f not, there is a~' > 0 and
a subsequence of this sequence, which we denote again by (["Ie) such that

Since

we see that

Vk

I, Vk

I.

I,

(4.4.8)

(4.4.9)

or
(X; (2/0);

f4.4.IO)

(4.4.11)

that is, the positive subsequence (:Xlc) is bounded. Since ,I YI, [I = I, for
every k, by passing to appropriate subsequence of subsequences, which we
again denote by (YIe) and (n:I,)' we may assume that (YIe) and (c:x/,) converge,
say to Y and rx, respectively. By the continuity of the map * on ~m\{OJ we
also have

say. (4.4.12)

But by Step 5 of Algorithm 3.1

Yk - (C'id2) ["Ie + ,sicS II = I.

Allowing k -->- x, since ,S;, -->- 0, we get

:1 Y - (c:x/2)[" = I;

whereas, by (4.4.9)
:1 Y - cw c= 1.

(4.4.13)

(4.4.14)

(4.4.15)

Since 1',':1 is strictly convex and Ilyl\ = I, (4.4.14) and (4.4.15) show that
(\( 0-:' O.

We now show that

'i Y - AD II I, (4.4.16)

This inequality follows from (4.1.4) for A :e;; O. If A > 0, then tlH:re exists j
such that 0 < Ci, < I\' for all k ? j. The function,

ep(t) = Yle ~ tD le II,

is strictly convex in t and ep(O) = 1 '" ep(CXIJ Hence,

(4.4.17)

if t rt (0, c:x/,), (4.4.18)

so that
Vk ~j. (4.4.19)

Allowing k -->- 00 in (4.4.19) we get (4.4.16) for A > O.
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But since II v II ~ S and II y II = I, (4.4.16) is in contradiction to Lemma 4.1.
Hence, we have to conclude that the original sequence (VI,) converges to O.

Since II h II = 1, for every k, to show (Yk) is convergent, due to compactness
of the unit II . II-sphere, it would be sufficient to show that (YIe) has a unique
adherent point. If Y is any adherent point of (Y.) so that a subsequence (h)
converges to Y, then by the foregoing, Vk -+ O. Hence, by Theorem 2.2 ',

b - (b i y*)y E Im(A),

which shows that

p = deb, KJ..) = (b i y*); (4.4.20)

PY = (b y*)y is a point in KJ.. nearest to b. Due to strict convexity of ·Ii.
nearest points are unique; in other words, Y is the only adherent point of (Yk)'

Q.E.D.

4.5. COROLLARY. Y = lim Yi. is the unique solution of problem (P*).

Proof Y E K.l. (.1'), II y Ii = I and y* E K. By (4.4.20) and (2.3.1) we get
(.I' y) ~" M. where M is defined in Theorem 2.4. Q.E.D.

We now state and prove a theorem which is a generalization of the previous
theorem and is in itself, therefore, an algorithm for solving problem (P).

4.6. THEOREM. Let II . 1,1, be a strictly COI11;ex, smooth 1101'11I on IRim and C
a Ilollempty compact subset of the open unit interml (0. I). Define the sequence
()'/,) recursicely by requiring Y1 to be any element such that

YlEKJ.. (.1'),

Assullle that J'k: is defined. Let

(YI s) O. (4.6.1)

Vk = Fy,,*.

Choose ;3,,> 0 such that

k I. (4.6.2)

where Oil > 0 is such that

I. (4.6.3)

(4.6.4)

and Ale E C is arbitrary. Put

(4.6.5)
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Then the sequence (Yk) converges. Denoting its limit by y, any exact solUlion
of the equation system

Ax = b _ (s I s) y
(s Iy) ,

yields a solution ofproblem (P).
Moreover, y is a solution ofproblem (P*).

(4.6.6)

Proof Algorithm 3.1 and Theorem 4.4 corresponds to the choice of
C = {t}. The proof of Theorem 4.4 carries over to this case with a minor
modification.

We have the convergence (4.4.2) as before, and, hence, 13k -+ O. We show
that Vk -+ 0, by aiming for a contradiction assuming that (Vk) is not con
vergent to zero. The steps are as in Theorem 4.4, though now we have to
pick an additional subsequence of (A k ) which converges to A (say). Then
o < A < I. We pass to appropriate subsequences, which will be again
denoted by Vk, CXk such that Vk -+ v # 0, and CXI<: -+ cx. In the limit, from (4.6.3)
and (4.6.4) we get

II y - AcxV II = 1 = II y - cxv II· (4.6.7)

Since II y II = I, 0 < A < I and 11'11 is strictly convex, (4.6.7) implies that
cx = O.

Now as in Theorem 4.4 we show that Vk -+ 0 and then complete the proof
exactly as in that theorem.

That y is a solution of problem (P*) was shown in Corollary 4.5. Q.E.D.

The next theorem shows that Algorithm 3.2 is convergent. In fact, the
following theorem is a generalization of Algorithm 3.2 and is in the same
spirit as Theorem 4.6, which is a generalization of Algorithm 3.1.

4.7. THEOREM. Let II . II be a smooth and strictly convex norm on \Rrn and
C a nonempty compact subset of the open unit interval (0, I). Define the
sequence (Yk) recursively by choosing YI such that

YI E K~ () (s),

Assume )'k is defined. Let

lihl!= 1, (YI Is) > O. (4.7.1 )

Define Ykll by

k);:l. (4.7.2)

(4.7.3)



60

where "I,

SREEDHARA"

o is chosen such that

\'• I, I. (4.7.4)

and AI; EO C is arbitrary. 111en the sequelJce (yt.! cOlJl'el'ges. Denoting Y
a solutioll o/Jlroblem (P) is giren by allY exact wlution of

limYr"

Ax h
(.I .I)

, ,'I.
(S! y).

(4.7.5)

MoreOlcr. y is the unique solution of prohlem (P*).

Proof By the construction of Yk we see that YI K (.I') and .1'1 I I.
Note that

Due to the strict convexity of i.

o. (4.7.6)

0<1.1'/.

By (4.7.3), (4.7.6), and (4.7.7) we get

I.

(Yr, .1'),

(4.7.7)

(4.7.8)

This shows that «(Yk I s)) is a strictly increasing sequence, which is clearly
bounded by AI (where M was defined in Theorem 2.4). Hence.

( .I)

( .rr, . l .I)

which by (4.7.7) shows that

lim Ii)'kit, I.

(4.7.9)

(4.7.10)

Proceeding as in Theorem 4.6 we get the relations (4.6.7) from (4.7.10) and
(4.7.4). The rest of the proof proceeds as that of Theorem 4.6.

Remark. Obviously, when C
Algorithm 3.2.

{~: in the foregoing theorem we get
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